Improved fractional Hardy inequalities for Dunkl gradient

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Hardy-sobolev Inequalities

Abstract. The main result includes features of a Hardy-type inequality and an inequality of either Sobolev or Gagliardo-Nirenberg type. It is inspired by the method of proof of a recent improved Sobolev inequality derived by M. Ledoux which brings out the connection between Sobolev embeddings and heat kernel bounds. Here Ledoux’s technique is applied to the operator L := x · ∇ and the analysis ...

متن کامل

Hardy-lieb-thirring Inequalities for Fractional Schrödinger Operators

We show that the Lieb-Thirring inequalities on moments of negative eigenvalues of Schrödinger-like operators remain true, with possibly different constants, when the critical Hardy-weight C|x|−2 is subtracted from the Laplace operator. We do so by first establishing a Sobolev inequality for such operators. Similar results are true for fractional powers of the Laplacian and the Hardy-weight and,...

متن کامل

Hardy Inequalities for Fractional Integrals on General Domains

We prove a sharp Hardy inequality for fractional integrals for functions that are supported on a general domain. The constant is the same as the one for the half-space and hence our result settles a recent conjecture of Bogdan and Dyda [2].

متن کامل

Hardy-hilbert Type Inequalities with Fractional Kernel in R

The main objective of this paper is some new special Hilbert-type and HardyHilbert-type inequalities in (R) with k ≥ 2 non-conjugate parameters which are obtained by using the well known Selberg’s integral formula for fractional integrals in an appropriate form. In such a way we obtain extensions over the whole set of real numbers, of some earlier results, previously known from the literature, ...

متن کامل

Hardy-type inequalities in fractional h-discrete calculus

The first power weighted version of Hardy's inequality can be rewritten as [Formula: see text] where the constant [Formula: see text] is sharp. This inequality holds in the reversed direction when [Formula: see text]. In this paper we prove and discuss some discrete analogues of Hardy-type inequalities in fractional h-discrete calculus. Moreover, we prove that the corresponding constants are sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 2021

ISSN: 1331-4343

DOI: 10.7153/mia-2021-24-10